Periodic Spline-Based Frames for Image Restoration
نویسندگان
چکیده
We present a design scheme to generate tight and semi-tight frames in the space of discrete-time periodic signals, which are originated from four-channel perfect reconstruction periodic filter banks. The filter banks are derived from interpolating and quasi-interpolating polynomial and discrete splines. Each filter bank comprises one linear phase low-pass filter (in most cases interpolating) and one high-pass filter, whose magnitude’s response mirrors that of a low-pass filter. In addition, these filter banks comprise two band-pass filters. We introduce the notion of local discrete vanishing moments (LDVM). In the tight frame case, analysis framelets coincide with their synthesis counterparts. However, in the semitight frames, we have the option to swap LDVM between synthesis and analysis framelets. The design scheme is generic and it enables us to design framelets with any number of LDVM. The computational complexity of the framelet transforms, which consists of calculating the forward and the inverse fast Fourier transforms, practically does not depend on the number of LDVM and does depend on the size of the impulse response filters. The designed frames are used for image restoration tasks, which were degraded by blurring, random noise and missing pixels. The images were restored by the application of the Split Bregman Iterations method. The frames performances are evaluated. A potential application of this methodology is the design of a snapshot hyperspectral imager that is based on a regular digital camera. All these imaging applications are described.
منابع مشابه
Spline-based frames in the space of periodic signals
We present a design scheme to generate tight and semi-tight frames in the space of discrete-time periodic signals, which are originated from four-channel perfect reconstruction periodic filter banks. The filter banks are derived from interpolating and quasi-interpolating polynomial splines. Each filter bank comprises one linear phase low-pass filter (in most cases interpolating) and one high-pa...
متن کاملPeriodic discrete-time frames: Design and applications for image restoration
We present diverse families of tight and semi-tight frames in the space of discrete-time periodic signals, which are generated by threeand four-channel perfect reconstruction periodic filter banks. The filter banks are derived from the interpolating and quasi-interpolating polynomial and discrete splines. Each filter bank comprises one interpolating linear phase low-pass filter and one high-pas...
متن کاملExtraction of high-resolution frames from video sequences
The human visual system appears to be capable of temporally integrating information in a video sequence in such a way that the perceived spatial resolution of a sequence appears much higher than the spatial resolution of an individual frame. While the mechanisms in the human visual system that do this are unknown, the effect is not too surprising given that temporally adjacent frames in a video...
متن کاملWavelets, multiwavelets and wavelet frames for periodic functions
Various results on constructing wavelets, multiwavelets and wavelet frames for periodic functions are reviewed. The orthonormal and Riesz bases as well as frames are constructed from sequences of subspaces called multiresolution analyses. These studies employ general frequency-based approaches facilitated by functions known as orthogonal splines and polyphase splines. While the focus is on the ...
متن کاملImage Restoration Using A PDE-Based Approach
Image restoration is an essential preprocessing step for many image analysis applications. In any image restoration techniques, keeping structure of the image unchanged is very important. Such structure in an image often corresponds to the region discontinuities and edges. The techniques based on partial differential equations, such as the heat equations, are receiving considerable attention i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014